An inverse problem for the fractional porous medium equation
نویسندگان
چکیده
We consider a time-independent variable coefficients fractional porous medium equation and formulate an associated inverse problem. determine both the conductivity absorption coefficient from exterior partial measurements of Dirichlet-to-Neumann map. Our approach relies on time-integral transform technique as well unique continuation property operator.
منابع مشابه
The Mesa Problem for the Fractional Porous Medium Equation
We investigate the behaviour of the solutions um(x, t) of the fractional porous medium equation ut + (−∆)(u) = 0, x ∈ R , t > 0. with initial data u(x, 0) ≥ 0, x ∈ RN , in the limit of as m → ∞ with fixed s ∈ (0, 1). We first identify the limit of the Barenblatt solutions as the solution of a fractional obstacle problem, and we observe that, contrary to the case s = 1, the limit is not compactl...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Cauchy problem for the inhomogeneous porous medium equation
We consider the initial value problem for the filtration equation in an inhomogeneous medium ρ(x)ut = ∆u, m > 1. The equation is posed in the whole space R, n ≥ 2, for 0 < t < ∞ ; ρ(x) is a positive and bounded function with a certain behaviour at infinity. We take initial data u(x, 0) = u0(x) ≥ 0, and prove that this problem is well-posed in the class of solutions with finite “energy”, that is...
متن کاملOn the Inverse Problem for a Fractional Diffusion Equation
We consider the inverse problem of finding the temperature distribution and the heat source whenever the temperatures at the initial time and the final time are given. The problem considered is one dimensional and the unknown heat source is supposed to be space dependent only. The existence and uniqueness results are proved.
متن کاملRegularity of weak solutions of the Cauchy problem to a fractional porous medium equation
This paper concerns the regularity of the weak solutions of the Cauchy problem to a fractional porous medium equation with a forcing term. In the recent work (Fan et al. in Comput. Math. Appl. 67:145-150, 2014), the authors established the existence of the weak solution and the uniqueness of the weak energy solution. In this paper, we show that the every nonnegative bounded weak energy solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asymptotic Analysis
سال: 2023
ISSN: ['0921-7134', '1875-8576']
DOI: https://doi.org/10.3233/asy-221781