An inverse problem for the fractional porous medium equation

نویسندگان

چکیده

We consider a time-independent variable coefficients fractional porous medium equation and formulate an associated inverse problem. determine both the conductivity absorption coefficient from exterior partial measurements of Dirichlet-to-Neumann map. Our approach relies on time-integral transform technique as well unique continuation property operator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mesa Problem for the Fractional Porous Medium Equation

We investigate the behaviour of the solutions um(x, t) of the fractional porous medium equation ut + (−∆)(u) = 0, x ∈ R , t > 0. with initial data u(x, 0) ≥ 0, x ∈ RN , in the limit of as m → ∞ with fixed s ∈ (0, 1). We first identify the limit of the Barenblatt solutions as the solution of a fractional obstacle problem, and we observe that, contrary to the case s = 1, the limit is not compactl...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The Cauchy problem for the inhomogeneous porous medium equation

We consider the initial value problem for the filtration equation in an inhomogeneous medium ρ(x)ut = ∆u, m > 1. The equation is posed in the whole space R, n ≥ 2, for 0 < t < ∞ ; ρ(x) is a positive and bounded function with a certain behaviour at infinity. We take initial data u(x, 0) = u0(x) ≥ 0, and prove that this problem is well-posed in the class of solutions with finite “energy”, that is...

متن کامل

On the Inverse Problem for a Fractional Diffusion Equation

We consider the inverse problem of finding the temperature distribution and the heat source whenever the temperatures at the initial time and the final time are given. The problem considered is one dimensional and the unknown heat source is supposed to be space dependent only. The existence and uniqueness results are proved.

متن کامل

Regularity of weak solutions of the Cauchy problem to a fractional porous medium equation

This paper concerns the regularity of the weak solutions of the Cauchy problem to a fractional porous medium equation with a forcing term. In the recent work (Fan et al. in Comput. Math. Appl. 67:145-150, 2014), the authors established the existence of the weak solution and the uniqueness of the weak energy solution. In this paper, we show that the every nonnegative bounded weak energy solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asymptotic Analysis

سال: 2023

ISSN: ['0921-7134', '1875-8576']

DOI: https://doi.org/10.3233/asy-221781